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A synchrobetatron condition on the grazing
function g for efficient crystal collimation

S. Peggs (BNL) and V. Previtali (CERN)

1 Introduction

The total horizontal displacement xT of a particle as it passes a crystal is the sum of its
betatron and synchrotron displacements[1],

xT = xβ + xs (1)

where the betatron displacement and angle oscillate according to

xβ = ax sin(φx) (2)

x′
β =

ax

β
(cos(φx)− α sin(φx)) (3)

Here β and α are horizontal twiss functions at the crystal, ax is the betatron amplitude,
and the betatron phase advances with turn number t according to

φx = 2πQxt + φx0, (4)

Similarly, the synchrotron displacement and angle are

xs = η δ (5)

x′
s = η′ δ (6)

where δ = ∆p/p is the relative momentum offset, which performs synchrotron oscillations
according to

δ = as sin(φs) (7)

= as sin(2πQst + φs0) (8)

Here η and η′ (dispersion and dispersion-prime) are optical quantities at the crystal,
complementing β and α. Only one of the four, β, is positive-definite. The total angle x′

T

of a particle is thus written in general as

x′
T =

ax

β
(cos(φx)− α sin(φx)) + η′as sin(φs) (9)
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1.1 The grazing function

Consider a test particle that just grazes the edge of a crystal displaced by xc when its
betatron and synchrotron displacements are simultaneously at their extrema – either
maxima or minima – such that

ax + |η| as = |xc| (10)

This equation correlates the betatron and synchrotron amplitudes of the set of grazing
particles, since it is trivially rewritten as

ax = |xc| − |η| as (11)

Simultaneous betatron and synchrotron oscillation extrema are achieved at phases

φx = sgn(xc) π/2 (12)

φs = sgn(xc) sgn(η) π/2 (13)

where the possibilities of negative crystal displacement xc and negative dispersion η are
explicitly taken into account.

The grazing angle – the total angle of grazing particles – is found by substituting these
phases into equation 9 and by using equation 11 to eliminate ax. It is

x′
G = −α

β
xc + sgn(xc) sgn(η)

(
α

β
η + η′

)
as (14)

Thus the grazing angle depends linearly on the synchrotron amplitude as according to

x′
G = −α

β
xc + sgn(xc) sgn(η) g as (15)

where the linear slope of grazing angle with respect to synchrotron amplitude is

dx′
G

das

= sgn(xc) sgn(η) g (16)

The grazing function g that enters these equations is an optical quantity defined as

g ≡
(

α

β
η + η′

)
(17)

Any such linear dependence of the grazing angle on the synchrotron amplitude is un-
desirable, since it may cause particles with some synchrotron amplitudes to fall outside
the limited angular acceptance that a crystal has for channeling, and also for volume
reflection. The rigorous synchrobetatron condition for constant grazing angle is

g = 0 (18)

This exact condition has not been met (or will not be met) in realistic implementations
in RHIC, SPS, Tevatron and LHC, not only because of the presence of optical errors, but
also because ideal crystal locations have not (so far) been available by design.
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2 RHIC, SPS, Tevatron & LHC

How close is it necessary to get to the rigorous condition of equation 18? What are the
implications for RHIC, SPS, Tevatron and LHC?

Table 1 shows that realistic crystal implementations have grazing functions – either
positive or negative – with an order of magnitude of 0.003. Inspection of the 4 pairs of η′

and g values in the table shows a strong cancellation between the two terms that comprise
g in equation 17. This is due to the intimate connection between the grazing function
and the normalized dispersion, which is discussed further, below.

α β η η′ g E σp/p σ′
G

[m] [m] [10−3] [10−3] [TeV] [10−3] [µ rad]

RHIC −26.5 1155.0 −0.864 −16.2 3.6 0.10 0.50 1.81
SPS −2.21 96.1 −0.880 −19.0 1.2 0.12 0.40 0.48
Tevatron −0.425 67.5 1.925 15.0 2.9 0.98 0.14 0.41
LHC 1.94 137.6 0.559 −8.9 −1.0 0.45 0.31 0.31

7.0 0.11 0.11

Table 1: Nominal optics and grazing function values for accelerators involved in crystal
collimation experiments, or in planning.

2.1 Grazing angle spread

The RMS spread of the grazing angle for incident particles with an RMS momentum
spread of σp/p is

σ′
G = |g|

(
σp

p

)
(19)

and is recorded for the 4 accelerators in the last column of table 1. The most probable
synchrotron amplitude in a bunch is about 1 σp/p, although many particles have a syn-
chrotron amplitude close to zero. Typically the crystal displacement |xc| is several times
the beam size, and so grazing particles preferentially have betatron and/or synchrotron
amplitudes much larger than 1, measured in units of RMS beam size. In some situations
(like RHIC[2]) the synchrotron amplitude spectrum is truncated at a few σp/p by the edge
of the RF bucket. In general (without descending into implementation-specific detail) all
particles with a range of synchrotron amplitudes

0 < as < nmax

(
σp

p

)
(20)
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must fall within the crystal acceptance angle σ′
A, where nmax ≥ 3, in order for (almost)

all particles to be efficiently collimated. It is therefore necessary that

nmax σ′
G < σ′

A (21)

Thus the exact synchrobetatron condition can be relaxed to the more practical result

|g| <
σ′

A

nmax (σp/p)
(22)

2.2 Crystal angular acceptance

The value of the acceptance angle varies widely, depending on implementation-specific
details such as the geometry of the crystal, the beam species and energy, and the mode of
crystal operation. Roughly speaking, the order of magnitude acceptance angle for protons
is

σ′
A [µrad] ∼ 2 channeling at 7 TeV (23)

∼ 10 channeling at 0.1 TeV (24)

∼ 100 volume reflection at any energy (25)

The volume reflection acceptance angle is simply the crystal bend angle, and so is su-
perficially independent of particle energy. In contrast, the channeling acceptance angle
decreases significantly with increasing energy. Because the maximum permissible graz-
ing function given by equation 22 decreases at higher energies for channeling, volume
reflection appears to become more favored at higher energies, at least in some scenarios.

2.3 RHIC

Figure 1 shows the RHIC design conditions for the crystal collimation experiment reported
at length by Fliller [2], and corresponding to the values reported in table 1 [3]. The figure
and the table show that the grazing angle varied by about 5.4 µrad over synchrotron
amplitudes from zero to 3 σp/p, at the edge of the RF bucket [4]. This is a range of
about half of the channeling acceptance angle [5]. It could be one of the root causes of
the relatively poor collimation efficiency that was observed in practice.

In addition to the collision optics values used here (with β∗ = 1 m at the nearby
PHENIX experiment), Fliller also records several other design optics with larger β∗ values,
up to a maximum value of 10 m in injection conditions [6]. The design value of β at the
crystal decreases from 1155 m to 129 m, but the grazing function only changes from 0.0036
to 0.0032.

2.4 SPS

Figure 2 shows the SPS conditions expected to be encountered in the UA9 experiment, in
2009 [7]. The grazing function value of 0.0012 is almost as small (in magnitude) as in the
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LHC, and a factor of 3 smaller than in RHIC, despite the significant negative dispersion
value at the crystal. Conditions are therefore predicted to be better – on this basis – than
in the RHIC experiment.

2.5 Tevatron

Figure 3 shows the Tevatron design conditions assumed for the ongoing T980 experi-
ment [8]. The separation of 10 murad contours is striking, in comparison with RHIC and
SPS conditions. The RMS momentum spread σp/p = 0.00014 is also significantly reduced,
mainly due to the significantly larger energy. Despite the relatively large grazing function
value of 0.0029, the T980 experiment has an RMS grazing angle value of 0.41 µrad, to
be compared with crystal acceptance values. The measured optics values that are also
available for the location of the T980 crystal appear to show very different g values [8].
However, these measurements results in large error bars that span the design value of g,
after the subtraction of one number from another of similar size.

2.6 LHC

Figure 4 shows the 7 TeV case for the LHC configuration currently under discussion, in
which the design grazing function g = −0.0010 is negative, and the RMS momentum
spread is only σp/p = 0.00011. The spread in grazing angle could still be an issue in the
LHC, despite its modest value, because of the extremely stringent collimation efficiency
requirements and because the crystal channeling acceptance angle is only about 2 µrad.
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Figure 1: RHIC: as encountered in the prototype crystal collimation scheme reported at
length by Fliller [2]. The grazing angle change between small circles (with synchrotron
amplitudes spaced by 1 σp/p) is 1.81 µradians, an order of magnitude larger than in the
LHC.

Figure 2: SPS (UA9): as expected for the UA9 experiment [7]. The small circles represent
grazing particles that are spaced by 1 σp/p in synchrotron amplitude, with grazing angle
steps of 0.48 µ radians.
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Figure 3: Tevatron (T980): as encountered in the ongoing T980 at the Tevatron. The
10 µrad contours (in red) are unusually widely spaced, and sloped, with a grazing function
value of g = 0.0029.

Figure 4: LHC: as discussed in a nominal collimation scheme still under consideration,
shown under design conditions at 7 TeV with σp/p = 0.00011 and g = −0.0010.
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3 Solving the synchrobetatron condition

The synchrobetatron condition for the ideal location of a crystal is

g =
α

β
η + η′ = 0 (26)

This is a condition on the optics at the crystal, independent of the emittance and the
energy spread of the beam. If it is met, the grazing angle does not depend on the
synchrotron amplitude. Two particular trivial solutions are immediately obvious:

1. η = η′ = 0: anywhere in a dispersion-free straight.

2. α = η′ = 0: simultaneous extrema of β and η, such as (logically) in the middle
of a quadrupole at the boundary of a matched half-cell.

Fortunately, the condition can be more generally satisfied – exactly or approximately –
at practical locations in magnet-free straights which are not dispersion free.

3.1 The general condition on normalized dispersion

The linear slope coefficient may be re-written as

g = ηf ′ (27)

by introducing the function

f = log(ηN) (28)

where the normalized dispersion is

ηN =
η√
β

(29)

and by recalling that

α = − 1

2
β′ (30)

The grazing function is thus revealed to be just

g =
√

β η′N (31)

and the rigorous general synchrobetatron condition g = 0 is just

η′N = 0 (32)

since β is positive-definite. A crystal is ideally placed at a location where normalized
dispersion is at a local maximum or minimum!
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4 Grazing function propagation

The differential equations describing the propagation of dispersion and the horizontal beta
function are quite similar to each other:

η′′ + Kη =
1

ρ
(33)

b′′ + Kb = b−3 (34)

where
b =

√
β (35)

Here K represents the quadrupole field, while ρ is the bend radius of the dipole field.
These equations enable the propagation of the grazing function

g = b η′N = b

(
η′

b
− ηb′

b2

)
=

(
η′ − ηb′

b

)
= η

(
η′

η
− b′

b

)
(36)

to be studied in particular cases of interest, even though a simple differential equation for
g appears to be unavailable.

4.1 Across a thin dipole or quadrupole

The changes in b′ and η′ across a thin dipole of bend angle ∆θ are

∆η′ = ∆θ (37)

∆b′ = 0 (38)

while b and η themselves do not change, so that the grazing function has a step of

∆g =

(
∆η′ − η ∆b′

b

)
= ∆θ (39)

showing that g is unchanged across a thin quadrupole. Similarly, the changes in b′ and η′

across a thin quadrupole of integrated strength ∆(KL) are

∆η′ = −∆(KL) η (40)

∆b′ = −∆(KL) b (41)

showing that the grazing function is unchanged across a thin quadrupole, since

∆g = η

(
∆η′

η
− ∆b′

b

)
= 0 (42)

The top plot in figure 5 confirms such propagation of g through thin magnets. In ironic
contrast, there is no simple solution to propagating g through a thick drift.
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Figure 5: The grazing function in a matched FODO cell with thin quads and dipoles
(top), partially filled with thick quads and dipoles (middle). and filled (bottom). In all
cases the half-cell is L = 25 m long, with a phase advance of 90 degrees per full-cell in
both planes, and with a bend angle of θ = π/50 radians per half-cell.
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4.2 Through a matched FODO half-cell

Consider a half-cell of length L with a quadrupole at each end, enclosing one or more
dipoles. If this half-cell is matched (b′ = η′ = 0 at both ends) then g is zero at both ends,
and close to zero within the quadrupoles, as illustrated in figure 5. However, η′N and
(hence) g are non-zero within the half-cell, since the normalized dispersion ηN is not ex-
actly the same at both ends. A reasonable approximation is that η′N evolves quadratically
with s, according to

η′N(s) ≈ 6 ∆ηN

L3
s(s− L) (43)

where ∆ηN is the total change from end to end. The extreme values of η′N and (hence) g
are therefore expected near the middle of the half-cell, at s = L/2, so that

|g|max ≈
√

βmid
3|∆ηN |

2L
(44)

The accuracy of this approximation depends on the detailed layout of the dipoles within
the half-cell in the case under study.

A case of particular interest is a matched FODO half-cell containing one or more
dipoles with a total bend angle of θ, centered half way along the half-cell. The maximum,
minimum, and mid half-cell beta functions (assuming thin quadrupoles) are

βF =
L

S

(
C

1− S

)
, βD =

L

S

(
C

1 + S

)
, βmid =

L

S

(
1 + C2

2C

)
(45)

where
S ≡ sin φ/2, C ≡ cos φ/2 (46)

and φ is the phase advance per full FODO cell, identical in both planes, and typically 60
or 90 degrees. Similarly, the extreme dispersion functions are

ηF = Lθ

(
2 + S

2S2

)
, ηD = Lθ

(
2− S

2S2

)
(47)

Hence the normalized dispersions are

ηN,F =
√

Lθ

(
2 + S

2S3/2C1/2

)√
1− S, ηN,D =

√
Lθ

(
2− S

2S3/2C1/2

)√
1 + S (48)

Putting all this together into equation 44 gives

|g|max ≈ θ
3

4
√

2

√
1 + C2

S2C

(
(2− S)

√
1 + S − (2 + S)

√
1− S

)
(49)

In the case at hand when the phase advance per cell is 90 degrees and C = S = 1/
√

2
then the maximum of the grazing function is predicted to be

|g|max ≈ 0.39 θ (50)

with no dependence on the half-cell length L.
Figure 5 shows that when L = 25 m and θ = π/50, then the maximum value occurs

close to the mid half-cell, with a value of |g|max = 0.0268 that is reasonably close to the
value of 0.0248 predicted by equation 50.
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4.3 Scaling in a matched FODO cell

Numerical testing confirms that the maximum value of the grazing function scales with
half-cell length L and with half-cell bending angle θ like

gmax ≈ 0.427 L0 θ1 (51)

when the phase advance per full-cell is 90 degrees. There is no dependence on the cell
length! A fair rule of thumb is that

gmax ≈ θ/2 (52)

These results apply only to a matched FODO cell. The grazing function can become much
larger (in absolute magnitude) when there is an unmatched dispersion (or betatron) wave,
and in non-FODO locations.

Finally, insofar as the maximum dispersion function remains remarkably constant at
ηmax ≈ 2 m over accelerators that span many orders of magnitude of energy γ (and
ignoring an order of magnitude range of dipole fields), then

θ ∼ γ−1/2 (53)

and so also
gmax ∼ γ−1/2 (54)

Fortunately the grazing function naturally decreases with increasing energy, as also does
the acceptance angle for channeling in a crystal collimator.
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5 Summary

The grazing function g parameterizes the rate of change of total angle with synchrotron
amplitude for grazing particles – those that just touch the surface of the crystal when their
synchrotron and betatron oscillations are simultaneously at their extreme displacements.
The grazing function is a pure optics function, closely related to the slope of the normalized
dispersion function, with an ideal value of g = 0 at the crystal.

Insofar as g is non-zero in practical implementations – for example due to optics
errors or design limitations – then it should be kept small enough in magnitude so that
all particles over the relevant synchrotron amplitude range remain within the crystal
acceptance angle. This appears to be reasonable to achieve in practice, especially when
crystals are operating in volume reflection mode, and especially at lower energies.

The grazing function is naturally small in well-matched optics with no (or small)
dispersion and betatron waves, and it is identically zero in dispersionless areas. However,
it is not in general necessary to make dispersion (and the dispersion slope) zero at the
crystal. More important is the need to ensure the absence of significant unmatched
betatron and dispersion waves, since they may increase g by an order of magnitude.

Design values for past, present and future crystal implementations in RHIC. SPS,
Tevatron and LHC suggest that the natural realistic values of g are acceptably small,
although they are not negligible. Planning for future crystal implementations should
always include a grazing function analysis, both in design (making g zero, or small enough)
and in error analysis (ensuring that g cannot become anomalously large).
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